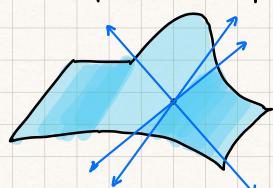
LECTURE 35

The instantaneous rate of change of f depends not only on the input point but also the direction in which we move from the input point



these points all have different slopes!

DEFINITION

the partial derivative of f wrt x at (x_0, y_0) denoted $f_x(x_0, y_0)$ is

$$\frac{d}{dx} f(x_1 y_0) \Big|_{x=x_0} = f_{\chi}(\chi_0, y_0) = \lim_{N \to 0} \frac{f(\chi_0 + N_1 y_0) - f(\chi_0, y_0)}{N}$$

- . This is just the normal derivative wrt x of f(x,y,) @ xo
- · we can also apply this to y

 $f(x,y) = x^2y^3 - 5xe^{3y}$. Compute f_{χ} and f_{χ} (xo, yo)

$$\frac{d}{dx} f(x_1 y_0) \Big|_{x=x_0} = \frac{d}{dx} (x^2 y^3 - 5xe^{3y}) = 2x y_0^3 - 5e^{3y_0}$$

$$\frac{d}{dy} f(x_0, y)|_{y=y_0} = \frac{d}{dy} (x_0^2 y^3 - 5x_0 e^{3y}) = 3y_0^2 x_0^2 - 15x_0 e^{y}$$

$$f_{x}(x_1 y) = 2xy^3 - 5e^{3y}, f_{y}(x_1 y) = 3x^2y^2 - 15x e^{3y}$$

LECTURE 35

Lecture 35 Problems

1)
$$f(x,y) = x^2 y e^{x+y}$$
 $C = f_x(1,1)$ and $d = f_y(1,1)$

at
$$f(x,1)$$
, the function is x^2e^{x+1}

diffrentiating wrt x,
$$\frac{d}{dx} x^2 e^{x+1} = 2xe^{x+1} + x^2 e^{x+1}$$

at x=1, this gives $3e^2$

2)
$$f(x_1y) = \frac{e^{xy} \sin(x_1y)}{\ln(x_1^2+1)}$$
 what is $f_{\mathcal{K}}(\pi, 0)$ [C] take $y = 0$.

$$\frac{d}{dx}\Big|_{x=\pi} \frac{\sin(x)}{\ln(x_1^2+1)} = \frac{-1}{\ln(\pi_1^2+1)}$$

take
$$y=0$$
.

$$\frac{d}{dx}\Big|_{x=\pi} \frac{\sin(x)}{\ln(x^2+1)} = \frac{-1}{\ln(\pi^2+1)}$$

3)
$$f(x,y) = Sin(xy) + x^3y - y^2$$

$$g(x,y) = f_x(x,y)$$
 $y\cos(xy) + 3yx^2$

$$h(x,y) = g_y(x,y) \cos(xy) - xy\sin(xy) + 3x^2$$